Grade 5 Innovative Science and Technology/Engineering Sample Task

Spring 2022

The Department of Elementary and Secondary Education (DESE) is developing an innovative science assessment for grades 5 and 8 that uses a new type of performance task for students. Students engage with meaningful problems through interactive computer simulations to conduct investigations, create and explore models, and solve science or engineering challenges. DESE is publishing one pilot performance task per grade as a sample task.

Sample items from the pilot test are available online at https://ma-innov-

<u>sci.mypearsonsupport.com/practice-tests/</u>. The sample items are collected from a mini test called an ePAT (electronic practice assessment tool). Items in the ePAT are displayed in TestNav 8, the testing platform used for the computer-based tests.

This document provides information about each item from the sample task, including the following:

- science content area (reporting category)
- standard covered
- practice category
- item type
- item description
- correct answer (for selected-response and technology-enhanced items)
- percentage of students in the pilot who answered the item correctly (Percent Correct)

Scoring rubrics are provided for constructed-response and simulation items.

Task Set Item Number	Reporting Category	Standard	Practice Category	ltem Type*	Item Description	Answer	Percent Correct
(1)	Earth and Space Science	5.ESS.2.1	Evidence, Reasoning, and Modeling	SR	Students will describe the water cycle process that moves sediment from a construction site, down a hill, and into a lake.	D	66%
		Th oth Wł	e site engineer tell her side of the cons hich part of the wat nstruction site to th	s the stud struction s er cycle n e lake?	ents that there is a lake on the ite. noves sediment from the		
		0	A. condensation	ı			
		0	B. evaporation				
		0	C. precipitation				
		۲	D. runoff				

(2)	Life Science	ife Science 3.LS.4.4	Evidence, Reasoning, and	SR TE	Students will describe how heavy rain would affect a food chain in a lake if no barriers were used at the construction	C	Part A 61%
		5.LS.2.1	Modeling		site.	See Image	Part B 49%
		Th The Pa Wh affe	is question hat e diagram shows rt A ich statement de ect the plants in t	is two pa a food ch escribes h the lake if	o rts. nain in the lake. ow heavy rain would most likely there were no barriers at the		
		0	A. The plants the water.	would get	energy from the mud that enters		
		0	 B. The plants grow taller. 	would use	e the mud that enters the water to		
		۲	C. The mud th from reach	nat enters ing the pla	the water would block sunlight ints.		
		0	D. The mud th plants in pla	nat enters ace at the	the water would help hold the bottom of the lake.		
		Pa	rt B				
		Bas sel ser	sed on the answ ect from the drop itence.	er to Part. o-down me	A and the food chain diagram, enus to correctly complete the		
		The de	e amount of matt ecrease	ter availab becaus	le to the snapping turtles would e the plants would		
		m	ake less plant mat	ter	▼ .		

This question has two parts.

Part A: Simulation Activity

Click here to learn how to use the simulation.

The simulation will let you test how well different types and arrangements of barriers reduce the amount of sediment that flows into the lake.

The students first want to determine which type of barrier prevents the most sediment from flowing into the lake when placed in a row, as shown in the diagram.

Sediment Barrier Designs

U Barriers

J Barriers

I Barriers

YOUR GOAL: Use the simulation to model how well a row of three of each barrier type works to prevent sediment from entering the lake during a light rainfall.

- 1. Create and test the three barrier designs shown in the diagram.
- 2. Set Rainfall to Light and use a new model for each design you test.

Part B

Based on your results, select from the drop-down menus to evaluate the designs.

The type of barrier that works best is the J barrier v

because the number on the muddiness scale is

less than v the other saved models.

(4)	Technology/	4.ETS.1.3	Investigations and	SIM	Students will evaluate how well different types	See Image	74%
	Engineering		Questioning		and arrangements of barriers reduce the		
					amount of sediment that flows into a lake	Second Drop Down: Saved	
					during the worst weather conditions.	model with lowest	
						Muddiness Score	

This question has two parts.

Part A: Simulation Activity

Click here to learn how to use the simulation.

In the previous question, you observed the water muddiness when using designs of only one barrier type in a light rain.

YOUR GOAL: Create and test FIVE different barrier designs to determine which design best reduces the amount of sediment that reaches the lake during the worst weather conditions. You may use any combination of barrier types in your designs.

 Use the controls for Rainfall and Barriers to make five barrier designs with any combination of barrier types.

Part B

Based on your results, select from the drop-down menus to describe the best design.

When evaluating different barrier designs to determine which is the best at reducing the amount of sediment reaching the lake during the worst weather conditions, it is important that each test has the same amount of rainfall v and to compare their

Choose...

. the best

muddiness levels v

This makes my saved model,

design.

(5)	Earth and Space Science	4.ESS.2.1 EV	idence, Reasoning, and Modeling	TE	Students will compare the amount of eros that occurs after a heavy rainfall to erosi after a light rainfall.	sion See Image on	68%
		Usi droj Wh gr sup rea ligh	ng information fr p-down menus to en the rainfall is eater than v ports this statem ching the lake is t rainfall.	om your sa o correctly heavy, the when the nent is that more muc	awed models, select from the complete the sentences. amount of erosion that occurs is a rainfall is light. The evidence that during a heavy rainfall, the water during a heavy rainfall, the water idy than v it is during a		
(6)	Earth and Space Science	5.ESS.3.1	Evidence, Reasoning, and Modeling	TE	Students will identify if observations pro evidence that barriers work to keep sedime construction site.	ovide See Image ent in the	29%
		T s o tt F p s s tt n	The site engineer s tudents some pict bservations to def ne sediment in the for each row, ident rovides evidence ediment in the cor ne table. Each ans ot at all. Yes No	eays it rained ures of the s termine whe constructio tify whether that the barn nstruction sin swer may be	d at the site and shows the site after the rain. Students make ther the sediment barriers kept n area when it rained. the observation in the table riers are working at keeping te by dragging "Yes" or "No" into e used once, more than once, or		
		_	Observa	ation	Evidence of Barriers Working		
		:	Sediment is piled o parriers in the con	up behind th struction site	e Yes		
		:	Sediment appears near the construct	on the gras ion site.	S No		
			Sediment does no sidewalk where the walking.	t appear on e students a	the re <u>Yes</u>		

(7)	Earth and Space Science	4.ETS.1.3	Evidence, Reasoning, and Modeling	SR	Students will identify how a barrier design can be improved at a construction site.	В	75%.
		The	teacher shows	the studer	nts a picture of how sediment		
		barr	iers failed at a	constructio	n site where heavy rain occurred		
		ove	r several davs	Based on v	what you have learned from the		
		sim	ulation, which is	the best i	mprovement that can be made to		
		the	sediment barrie	r design at	this site?		
		0	A. Remove or	ne of the I I	parriers from the site.		
		۲	B. Add a row	of J barrier	rs near the top of the hill.		
		0	C. Replace th	e metal no	sts on the I barriers with wooden		
			posts.	e motar pe			
		0	D. Create ope allow wate	enings alon r to flow thr	g the bottom of the I barriers to rough.		

(8)	Earth and Space	3.ESS.3.1	Evidence, Reasoning,	CR	Students will evaluate three designs to	See Scoring Guide	29%
	Science		and Modeling		see how well they use the fewest		
					number of barriers to prevent sediment		
					from entering the lake.		
				-			-

This question has four parts.

Part A: Simulation Activity

Click here to learn how to use the simulation.

The teacher presents three sediment barrier designs, W, Y, and Z, to the students and asks them to evaluate the designs based on two criteria.

Criteria for Evaluating Designs

Criterion 1: Prevents the greatest amount of sediment from entering the lake

Criterion 2: Uses the smallest number of barriers

YOUR GOAL: Use the simulation to model these three designs in a heavy rainfall and determine which design best meets the criteria.

Part B

Describe one reason a construction company would include "Prevents the greatest amount of sediment from entering the lake" as one of the criteria for evaluating sediment barriers.

Part C

Which design (W, Y, or Z) best meets the two criteria for evaluating designs? Provide evidence to support your answer.

Part D

Describe one change the students could make in the simulation to improve the barrier design from Part C so that less sediment enters the lake. Explain how the design change reduces the amount of sediment that enters the lake.

Number of Points Received	Percentage of Test-takers
0 pt.	30.0%
1 pt.	35.0%
2 pt.	16.0%
3 pt.	11.0%
4 pt.	7.0%
Omitting	0.0%

	Scoring Guide for Parts B, C, and D (3.ESS.3.1, EAE)
Score	Description
4	The response demonstrates a thorough understanding of evaluating the merits of a sediment barrier design in preventing damage to a lake caused by sediment due to weather. The response clearly describes the reason for a criterion of using fewer barriers. The response correctly identifies the design that best meets the design criteria and uses evidence to explain the reasoning. The response also clearly describes an improvement to the design.
3	The response demonstrates a general understanding of evaluating the merits of a sediment barrier design in preventing damage to a lake caused by sediment due to weather. The response clearly describes the reason for a criterion of using fewer barriers. The response correctly identifies the design that best meets the design criteria and uses evidence to explain the reasoning. The response also clearly describes an improvement to the design.
2	The response demonstrates a limited understanding of evaluating the merits of a sediment barrier design in preventing damage to a lake caused by sediment due to weather.
1	The response demonstrates a minimal understanding of evaluating the merits of a sediment barrier design in preventing damage to a lake caused by sediment due to weather.
0	The response is incorrect or contains some correct work that is irrelevant to the skill or concept being measured.

* Innovative Assessment item types are selected-response (SR), technology-enhanced (TE), simulation (SIM), and constructed- response (CR). ** Sample responses and scoring guidelines for constructed-response items will be posted to the Department's website later this year.